www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Stationarität cos(U)
Stationarität cos(U) < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationarität cos(U): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mi 08.05.2013
Autor: steppenhahn

Aufgabe
Sei [mm] $U\sim U[0,2\pi]$ [/mm] (Gleichverteilung auf [mm] [0,2\pi]) [/mm] und $a [mm] \in \IR$. [/mm] Sei [mm] $f:\IR \to \IR$ [/mm] eine [mm] 2\pi-periodische [/mm] Funktion.

Warum gilt [mm] $\IP^{f(U)} [/mm] = [mm] \IP^{f(U+a)}$ [/mm] ?

Hallo!

Ich überlege gerade an einem Beweis der obigen Aussage.
Es geht darum, warum $f(U)$ und $f(U+a)$ die gleiche Verteilung haben.

Anschaulich ist das logisch, weil sowohl U als auch U+a eine Zufallsvariable beschreiben, die gleichverteilt auf einem Intervall der Länge [mm] 2\pi [/mm] sind.


Allerdings scheitere ich gerade an einem formalen Beweis. Es müsste eigentlich ganz einfach sein, aber ich sehe es gerade nicht :-( Kann mir da jemand helfen?


Viele Grüße,
Stefan

        
Bezug
Stationarität cos(U): Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mi 08.05.2013
Autor: felixf

Moin Stefan!

> Sei [mm]U\sim U[0,2\pi][/mm] (Gleichverteilung auf [mm][0,2\pi])[/mm] und [mm]a \in \IR[/mm].
> Sei [mm]f:\IR \to \IR[/mm] eine [mm]2\pi-periodische[/mm] Funktion.
>  
> Warum gilt [mm]\IP^{f(U)} = \IP^{f(U+a)}[/mm] ?
>  Hallo!
>  
> Ich überlege gerade an einem Beweis der obigen Aussage.
>  Es geht darum, warum [mm]f(U)[/mm] und [mm]f(U+a)[/mm] die gleiche
> Verteilung haben.
>  
> Anschaulich ist das logisch, weil sowohl U als auch U+a
> eine Zufallsvariable beschreiben, die gleichverteilt auf
> einem Intervall der Länge [mm]2\pi[/mm] sind.

... und da $f$ [mm] $2\pi$-periodisch [/mm] ist :)

> Allerdings scheitere ich gerade an einem formalen Beweis.
> Es müsste eigentlich ganz einfach sein, aber ich sehe es
> gerade nicht :-( Kann mir da jemand helfen?

Du musst doch zeigen, dass [mm] $\IP(U \in f^{-1}(V)) [/mm] = [mm] \IP(U \in f^{-1}(V) [/mm] - a)$ ist fuer jede Teilmenge $V [mm] \subseteq \IR$. [/mm] Wenn du $V' := [mm] f^{-1}(V)$ [/mm] setzt, ist dies aequivalent zu [mm] $\IP(U \in [/mm] V') = [mm] \IP(U \in [/mm] V' - a)$ fuer jede [mm] $2\pi$-periodische [/mm] Menge $V'$ (bedeutet: aus $x [mm] \in [/mm] V'$ folgt $x + k 2 [mm] \pi \in [/mm] V'$ fuer alle $k [mm] \in \IZ$). [/mm]

Schreibe jetzt $a = 2 [mm] \pi [/mm] k + b$ mit $0 [mm] \le [/mm] b < 2 [mm] \pi$ [/mm] und $k [mm] \in \IZ$. [/mm] (Dies geht auf genau eine Art und Weise.) Dann ist $V' - a = V' - 2 [mm] \pi [/mm] k - b = V' - b$. Weiterhin ist [mm] $\IP(U \in [/mm] V') = [mm] \frac{1}{2\pi} \int_0^{2\pi} 1_{V'}(t) \; [/mm] dt$ und [mm] $\IP(U \in [/mm] V' - b) = [mm] \IP(U [/mm] + b [mm] \in [/mm] V') [mm] \frac{1}{2\pi} \int_b^{2\pi+b} 1_{V'}(t) \; [/mm] dt$.

Teile das zweitere Integral nun in die Teile [mm] $\int_b^{2 \pi}$ [/mm] und [mm] $\int_{2 \pi}^{2 \pi + b}$ [/mm] auf und verwende, dass $V'$ [mm] $2\pi$-periodisch [/mm] ist. Dann siehst du, dass das zweite Integral gleich dem ersten ist.

LG Felix


Bezug
                
Bezug
Stationarität cos(U): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Mi 08.05.2013
Autor: steppenhahn

Danke Felix,

ich denke damit bekomme ich es hin :)

Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de