www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihe
Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 01:45 Sa 26.12.2015
Autor: Struppi21

Aufgabe
b) Es seien zwei Potenzreihen

[mm] A:=\summe_{n=0}^{\infty} a_{n}z^{n} [/mm] und [mm] B:=\summe_{n=0}^{\infty} b_{n}z^{n} [/mm]

mit Konvergenzradien rA > 0 und rB > 0 geben. es gelte rA [mm] \not= [/mm] rB. Bestimmen sie den Konvergenzradius der Potenzreihe:

[mm] summe_{n=0}^{\infty} (a_{n}+b_{n})z^{n} [/mm]

c) Was lässt sich in Teil b) sagen, wenn rA = rB gilt?

Hi,

ich bin hier leider wieder total überfordert. Wie soll man denn hier auf einen exakten Konvergenzradius kommen?

Könnte mir hier wer weiterhelfen? :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Sa 26.12.2015
Autor: Thomas_Aut

Hallo,


2 Fälle sind laut deiner Angabe möglich

1) rA < rB
2) rA >rB

und erst zuletzt kommt die Frage : was ist mit rA=rB


Ihr hattet doch sicher :

Hat [mm] $\sum a_{n}x^{n}$ [/mm] Konvergenzradius r>0 und hat [mm] $\sum b_{n}x^n$ [/mm] Konvergenzradius $s>r $, so hat die Reihe [mm] $\sum (a_n [/mm] + [mm] b_n)x^n$ [/mm] Konvergenzradius r.


Lg

Bezug
                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:53 Sa 26.12.2015
Autor: Struppi21

Ja so etwas hatten wir, jedoch haben wir da ein mindestens noch dazu stehen. Also: mindestens Konvergenzradius r. Das heisst, der könnte theoretisch auch größer sein.

Wäre ja auch etwas unlogisch von der Fragestellung her, wenn da bei b und c eh das gleiche bei rauskommt oder übersehe ich da was?

Bezug
                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Sa 26.12.2015
Autor: Thomas_Aut


> Ja so etwas hatten wir, jedoch haben wir da ein mindestens
> noch dazu stehen. Also: mindestens Konvergenzradius r. Das
> heisst, der könnte theoretisch auch größer sein.
>  
> Wäre ja auch etwas unlogisch von der Fragestellung her,
> wenn da bei b und c eh das gleiche bei rauskommt oder
> übersehe ich da was?

Gerade im Falle $rA = rB$ kann sich ein größerer Konvergenzradius ergeben.

Und weil mir rA und rB wirklich auf den Nerv geht, gehen wir vielleicht zu besseren Bezeichnungen über

Sei [mm] $R_{1}$ [/mm] der Konvergenzradius der Potenzreihe [mm] $\sum_{n=0}^{\infty}a_{n}x^n$ [/mm]
[mm] $R_{2}$ [/mm] der Konvergenzradius von [mm] $\sum_{n=0}^{\infty}b_{n}x^n$ [/mm]

Wir fragen uns nach dem KR (Konvergenzradius) von : [mm] $\sum_{n=0}^{\infty}(a_{n}+b_{n})x^n$ [/mm]

Sei [mm] $R_{1} [/mm] < [mm] R_{2}$ [/mm]

Was ist also der Konvergenzradius von [mm] $\sum_{n=0}^{\infty}(a_{n}+b_{n})x^n$ [/mm] ?
Was passiert wenn wir ein $|x| [mm] \in (R_{1},R_{2})$ [/mm] wählen ?
Ist dann [mm] $\{(a_{n}+b_{n})x^n\}$ [/mm] beschränkt?

Bedenke: der Konvergenzradius einer Potenzreihe [mm] $\sum_{n=0}^{\infty}c_{n}x^n$ [/mm] ist [mm] $sup\{R>0 , \{c_{n}x^n \} \hspace{0.1cm} ist \hspace{0.1cm} beschraenkt , |x| \le R \}$ [/mm]

Grüße und noch einen frohen Weihnachtstag

Thomas

Bezug
                                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 So 27.12.2015
Autor: Struppi21

Wenn ich jetzt ein |x| wähle, was grösser wie [mm] R_{1} [/mm] ist, dann ist [mm] a_{n}*x^{n} [/mm] unbeschränkt und somit auch [mm] a_{n}*x^{n} [/mm] + [mm] b_{n}*x^{n}. [/mm] Ist das die richtige Überlegung?

Was ich jetzt nicht verstehe ist warum im Fall [mm] R_{1} [/mm] = [mm] R_{2}, [/mm] der Konvergenzradius grösser wird?

Bezug
                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 So 27.12.2015
Autor: Thomas_Aut

Wir machen ein leichtes Beispiel :

$f(x) = [mm] \sum_{n=0}^{\infty}x^n$ [/mm] , $g(x)=-f(x)$

Offensichtlich ist der Konvergenzradius von f und g gleich. (Wie groß ist er )

und was ist nun der Konvergenzradius von f+g ?


lg

Bezug
        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:06 Mo 28.12.2015
Autor: fred97

Den Fall [mm] r_A
Sei

$ [mm] A:=\summe_{n=0}^{\infty} a_{n}z^{n}, B:=\summe_{n=0}^{\infty} b_{n}z^{n} [/mm] $

und

[mm] $C:=\summe_{n=0}^{\infty} c_{n}z^{n} [/mm] $, wobei [mm] c_n:=a_n+b_n. [/mm]

Sei also [mm] r_A [/mm] < [mm] r_B [/mm] und [mm] r_C [/mm] der Konvergenzradius von $C$

1. Ist $|z| [mm]
    [mm] r_C \ge r_A. [/mm]


2. Annahme [mm] r_C>r_A. [/mm]  Dann gibt es ein $t [mm] \in (r_A,r_B)$ [/mm] derart, dass

     [mm] \summe_{n=0}^{\infty} c_{n}t^{n} [/mm] konvergiert.

Wegen

   [mm] a_nt^n=c_nt^n-b_nt^n [/mm]

konvergiert dann auch  [mm] \summe_{n=0}^{\infty} a_{n}t^{n}. [/mm] Das ist aber ein Widerspruch, denn  [mm] \summe_{n=0}^{\infty} a_{n}t^{n} [/mm] ist wegen [mm] t>r_A [/mm] divergent.

Also ist [mm] r_C \le r_A. [/mm]

Aus 1. und 2. folgt: [mm] r_C=r_A. [/mm]




Zum Fall [mm] r_A=r_B: [/mm] ist z.B. [mm] b_n=-a_n, [/mm] so hat [mm] \summe_{n=0}^{\infty} (a_{n}+b_n)z^{n} [/mm] den Konvergenzradius [mm] \infty. [/mm]



FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de