www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite Funktionen
Implizite Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Fr 22.06.2012
Autor: Denis92

Aufgabe
Gegeben sei die Funktion [mm] f:\IR^3->\IR [/mm] mit f(x,y,z) = [mm] x^3y^3+z^3+z^2-3xyz [/mm]
Zeigen Sie, dass in einer Umgebung von (1,1) eine stetig differenzierbare Funktion g(x,y) existiert, mit g(1,1)=1 und f(x,y,z) = 0

Hallo Matheforum,
wie man unschwer erkennen kann haben wir in der Vorlesung mit impliziten Funktionen begonnen. Unter anderem haben wir den Hauptsatz über implizite Funktionen bewiesen. Leider bin ich bzgl. obiger Fragestellung unsicher. Hier mein Ansatz:

Es ist Sei U [mm] \subset \IR^2, V\subset \IR. [/mm] Dann ist [mm] f:U\times [/mm] V -> [mm] \IR [/mm] für fest gegebene (x,y) [mm] \in [/mm] U, z [mm] \in [/mm] V. Nun ist g(1,1) = 1, d.h. f(1,1,g(1,1)) = f(1,1,1)=0. Folglich handelt es sich bei f auch wirklich um eine implizite Funktion.
Nun ist die Ableitung meiner Funktion f:

D^2f(x,y,z) = [mm] \pmat{6xy^3 & 9x^2y^2-3z & -3y \\ 9x^2y^2-3z & 6yx^3 & -3x \\ -3y & -3x & 6z+2} [/mm]

also für [mm] (x_0,y_0,z_0)=(1,1,g(1,1)) [/mm] = (1,1,1) folgt:

D^2f(1,1,1) [mm] =\pmat{1 & 6 & -3\\6&6&-3\\-3&-3 & 8} [/mm]

Die Determinante davon ist -195 => Die Matrix ist invertierbar.

Das heißt an dieser Stelle kann ich doch jetzt den Hauptsatz anwenden, oder?
D.h.:

Es existieren offene Mengen [mm] U_1\subset [/mm] U, [mm] (x,y)\in U_1, [/mm] und [mm] z\in V_1 \subset [/mm] V, sowie eine stetig diffbare Abbildung [mm] g:U_1 [/mm] -> [mm] V_1, [/mm] sodass die Gleichung für alle Paare [mm] ((x,y),z)\in U_1\times V_1 [/mm] gelöst wird, d.h. g(x,y) = z, [mm] (x,y)\in U_1, z\in V_1. [/mm]

Ist der Beweis bis hier hin korrekt? In der Vorlesung hatten wir das ganze nur mit dem [mm] \IR^2, [/mm] und googlen hat leider auch nichts weiter ergeben.

Würde mich über ein Feedback freuen,
liebe Grüße, Denis :-)

        
Bezug
Implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Fr 22.06.2012
Autor: MathePower

Hallo Denis92,

> Gegeben sei die Funktion [mm]f:\IR^3->\IR[/mm] mit f(x,y,z) =
> [mm]x^3y^3+z^3+z^2-3xyz[/mm]
>  Zeigen Sie, dass in einer Umgebung von (1,1) eine stetig
> differenzierbare Funktion g(x,y) existiert, mit g(1,1)=1
> und f(x,y,z) = 0
>  Hallo Matheforum,
>  wie man unschwer erkennen kann haben wir in der Vorlesung
> mit impliziten Funktionen begonnen. Unter anderem haben wir
> den Hauptsatz über implizite Funktionen bewiesen. Leider
> bin ich bzgl. obiger Fragestellung unsicher. Hier mein
> Ansatz:
>  
> Es ist Sei U [mm]\subset \IR^2, V\subset \IR.[/mm] Dann ist
> [mm]f:U\times[/mm] V -> [mm]\IR[/mm] für fest gegebene (x,y) [mm]\in[/mm] U, z [mm]\in[/mm] V.
> Nun ist g(1,1) = 1, d.h. f(1,1,g(1,1)) = f(1,1,1)=0.
> Folglich handelt es sich bei f auch wirklich um eine
> implizite Funktion.
>  Nun ist die Ableitung meiner Funktion f:
>
> D^2f(x,y,z) = [mm]\pmat{6xy^3 & 9x^2y^2-3z & -3y \\ 9x^2y^2-3z & 6yx^3 & -3x \\ -3y & -3x & 6z+2}[/mm]
>  


Das ist die Matrix der zweiten partiellen Ableitungen,
auch Hesse-Matrix genannt.


> also für [mm](x_0,y_0,z_0)=(1,1,g(1,1))[/mm] = (1,1,1) folgt:
>  
> D^2f(1,1,1) [mm]=\pmat{1 & 6 & -3\\6&6&-3\\-3&-3 & 8}[/mm]
>  
> Die Determinante davon ist -195 => Die Matrix ist
> invertierbar.
>


In der ersten Zeile und ersten Spalte muss eine 6 stehen.
Somit verschwindet die Determinante.


> Das heißt an dieser Stelle kann ich doch jetzt den
> Hauptsatz anwenden, oder?
>  D.h.:
>  
> Es existieren offene Mengen [mm]U_1\subset[/mm] U, [mm](x,y)\in U_1,[/mm] und
> [mm]z\in V_1 \subset[/mm] V, sowie eine stetig diffbare Abbildung
> [mm]g:U_1[/mm] -> [mm]V_1,[/mm] sodass die Gleichung für alle Paare
> [mm]((x,y),z)\in U_1\times V_1[/mm] gelöst wird, d.h. g(x,y) = z,
> [mm](x,y)\in U_1, z\in V_1.[/mm]
>  
> Ist der Beweis bis hier hin korrekt? In der Vorlesung
> hatten wir das ganze nur mit dem [mm]\IR^2,[/mm] und googlen hat
> leider auch nichts weiter ergeben.
>
> Würde mich über ein Feedback freuen,
>  liebe Grüße, Denis :-)


Gruss
MathePower

Bezug
        
Bezug
Implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Fr 22.06.2012
Autor: Denis92

Danke für die schnelle Antwort. Du hast natürlich Recht, dass es sich damit um die Hessematrix handelt.
Und in der in (1,1,1) ausgewerteten Matrix ist natürlich auch ein Fehler drin.

Was aber sagt mir das? In meinen Aufzeichnungen steht, dass die Abbildung g mit den gewünschten Eigenschaften genau dann existiert, wenn die Hessematrix invertierbar ist, sprich in meinem Fall existiert die Abbildung nicht ? Oder sehe ich das falsch?
In der Aufgabenstellung hört sich das aber anders an..

Denis

Bezug
                
Bezug
Implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Fr 22.06.2012
Autor: MathePower

Hallo Denis92,

> Danke für die schnelle Antwort. Du hast natürlich Recht,
> dass es sich damit um die Hessematrix handelt.
>  Und in der in (1,1,1) ausgewerteten Matrix ist natürlich
> auch ein Fehler drin.
>  
> Was aber sagt mir das? In meinen Aufzeichnungen steht, dass
> die Abbildung g mit den gewünschten Eigenschaften genau
> dann existiert, wenn die Hessematrix invertierbar ist,


So einen Satz kenne ich nicht.


> sprich in meinem Fall existiert die Abbildung nicht ? Oder
> sehe ich das falsch?


Du musst doch zeigen, daß die partielle Ableitung nach z
in dem gegegben Punkt nicht verschwindet.


>  In der Aufgabenstellung hört sich das aber anders an..
>  
> Denis  


Gruss
MathePower

Bezug
                        
Bezug
Implizite Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Fr 22.06.2012
Autor: Denis92

Okay, dann hab ich das wohl falsch verstanden. Also:

[mm] f_z(x_0,y_0,z_0) [/mm] = [mm] f_z(1,1,1)= 3*1^2+2*1-3*1*1=2 [/mm] also nicht Null also gilt der Satz.

Ich denke damit ist alles beantwortet, vielen dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de