matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ordinary Differential Equations" - DGL lösen
DGL lösen < Ordinary Differential Equations < Differential Equations < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials

DGL lösen: Rückfrage, Idee, Tipp, Hilfe
Status: (Question) answered Status 
Date: 14:32 Do 17/05/2018
Author: Dom_89

Aufgabe
Bestimme für x > 0 die allgemeine Lösung der Differentialgleichung

[mm] y`(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}} [/mm]

Hallo,

hier einmal mein bisheriger Ansatz:

[mm] y'(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}} [/mm]

1)

[mm] y'(x)-\bruch{y(x)}{x}=0 [/mm]

[mm] h(x)=\integral [/mm] a(x) dx = [mm] \integral -\bruch{1}{x} [/mm] dx = -ln(x)+C

[mm] y_{h}(x) [/mm] = [mm] C*e^{-h(x)} [/mm] = [mm] C*e^{ln(x)} [/mm] = C*x

2)

[mm] y_{s}(x) [/mm] = [mm] e^{-h(x)} \integral (b(x)*e^{h(x)})dx [/mm]

[mm] y_{s}(x) [/mm] = [mm] e^{ln(x)} \integral (\bruch{x}{(x+1)^{2}}*e^{-ln(x)})dx [/mm]

[mm] y_{s}(x) [/mm] = x [mm] \integral (\bruch{x}{(x+1)^{2}}*\bruch{1}{x})dx [/mm]

An dieser Stelle bin ich mir nun leider unsicher, ob ich so richtig zusammengefasst/vereinfacht habe!?

Als Lösung ist - [mm] \bruch{x}{x+1}+Cx [/mm] angegeben - doch hierauf komme ich irgendwie nicht. Könnt ihr mir da helfen?

Vielen Dank im Voraus

        
Bezug
DGL lösen: Antwort
Status: (Answer) finished Status 
Date: 14:59 Do 17/05/2018
Author: fred97


> Bestimme für x > 0 die allgemeine Lösung der
> Differentialgleichung
>  
> [mm]y'(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}}[/mm]
>  Hallo,
>  
> hier einmal mein bisheriger Ansatz:
>  
> [mm]y'(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}}[/mm]
>  
> 1)
>  
> [mm]y'(x)-\bruch{y(x)}{x}=0[/mm]
>  
> [mm]h(x)=\integral[/mm] a(x) dx = [mm]\integral -\bruch{1}{x}[/mm] dx =
> -ln(x)+C
>  
> [mm]y_{h}(x)[/mm] = [mm]C*e^{-h(x)}[/mm] = [mm]C*e^{ln(x)}[/mm] = C*x
>  
> 2)
>  
> [mm]y_{s}(x)[/mm] = [mm]e^{-h(x)} \integral (b(x)*e^{h(x)})dx[/mm]
>  
> [mm]y_{s}(x)[/mm] = [mm]e^{ln(x)} \integral (\bruch{x}{(x+1)^{2}}*e^{-ln(x)})dx[/mm]
>  
> [mm]y_{s}(x)[/mm] = x [mm]\integral (\bruch{x}{(x+1)^{2}}*\bruch{1}{x})dx[/mm]
>  
> An dieser Stelle bin ich mir nun leider unsicher, ob ich so
> richtig zusammengefasst/vereinfacht habe!?
>  

Du kannst noch mehr  vereinfachen.

Im Integral kürze noch  ein  x raus.  Zu bestimmen hast Du dann  eine Stammfunktion von [mm] 1/(x+1)^2. [/mm]

Damit kommst du  dann auch  auf untenstehende Lösung.


> Als Lösung ist - [mm]\bruch{x}{x+1}+Cx[/mm] angegeben - doch
> hierauf komme ich irgendwie nicht. Könnt ihr mir da
> helfen?
>  
> Vielen Dank im Voraus


Bezug
                
Bezug
DGL lösen: Mitteilung
Status: (Statement) No reaction required Status 
Date: 15:10 Do 17/05/2018
Author: Dom_89

Hallo fred97,

hat alles geklappt !

Vielen Dank für die schnelle Hilfe

Viele Grüße

Dom_89

Bezug
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status 3h 57m ago 4. angela.h.b.
SGeradEbene/Abstand eines Punktes
Status 9h 47m ago 4. HJKweseleit
GraphTheo/Zusammenhängender Zufallsgraph
Status 14h 55m ago 6. HJKweseleit
ULinAAb/Kern und Bild bestimmen
Status 19h 28m ago 5. Dom_89
DiffGlGew/Lösung der DGL
Status 20h 23m ago 4. Dom_89
SGeradEbene/Parallele Ebenen
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]