www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Lösung stetig/ diff.bar
Lösung stetig/ diff.bar < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung stetig/ diff.bar: Wie kann man das zeigen?
Status: (Frage) überfällig Status 
Datum: 13:55 So 24.11.2013
Autor: mikexx

Aufgabe
Es sei [mm] $\Omega:=]0,\pi[\times ]0,\infty[$. [/mm]
Mit der Fouriermethode der Separation habe ich die beschränkte formale Lösung der folgenden Randwert-Aufgabe bestimmt:

(i) [mm] $\Delta [/mm] u=0$ in [mm] $\Omega$ [/mm]

(ii) [mm] $u(0,y)=u(\pi,y)=0$ [/mm] für [mm] $y\geq [/mm] 0$

(iii) $u(x,0)=g(x)$ für [mm] $x\in [0,\pi]$, [/mm]

wobei [mm] $g\in C^{0,\lambda}([0,\pi])$ [/mm] mit [mm] $0<\lambda\leq [/mm] 1$ und [mm] $g(0)=g(\pi)=0$. [/mm]

Und zwar habe ich folgende beschränkte Lösung erhalten:

[mm] $u(x,y)=\sum_{k=1}^{\infty}g_k\exp(-ky)\sqrt{\frac{2}{\pi}}\sin(kx)$, [/mm] mit [mm] $g_k:=\int_0^{\pi}g(x)\sqrt{\frac{2}{\pi}}\sin(kx)\, [/mm] dx$.

Nun ist darüber hinaus noch zu zeigen, dass diese gefundene Lösung in

[mm] $C(\overline{\Omega})\cap C^{\infty}(\Omega)$ [/mm]

liegt. Wie kann man das machen?



Hierbei bezeichnet übrigens [mm] $C^{0,\lambda}([0,\pi])$ [/mm] den Raum der Hölder-stetigen Funktionen auf [mm] $[0,\pi]$. [/mm]


Zunächstmal habe ich versucht zu zeigen, dass [mm] $u\in C(\overline{\Omega})$, [/mm] und zwar mittels Weierstraß-Kriterium:

D.h. mein Ziel ist es zu zeigen, dass

[mm] $\sum_{k=1}^{\infty}g_k\exp(-ky)\sqrt{\frac{2}{\pi}}\sin(kx)$ [/mm]

gleichmäßig konvergiert.

Für alle [mm] $0
[mm] $\lvert g_k\exp(-ky)\sqrt{\frac{2}{\pi}}\sin(kx)\rvert
da [mm] $\lvert g_k\rvert\leq\lvert\int_0^{\pi}\vert g(x)\rvert <\infty$, [/mm] weil $g$ Hölder-stetig auf [mm] $[0,\pi]$ [/mm] ist und daher integrierbar und daher integrierbar über [mm] $[0,\pi]$. [/mm] Außerdem gilt [mm] $\lvert\sin(kx)\rvert\leq [/mm] 1$.

Zudem ist [mm] $\lvert\exp(-ky)\rvert=\exp(-ky)$ [/mm] für alle [mm] $0
Es ist

$$
[mm] \sum_{k=1}^{\infty}\exp(-ky)<\infty. [/mm]
$$
Also konvergiert die Reihe gleichmäßig (nach Weierstraß).
Da alle

[mm] $g_k\exp(-ky)\sqrt{\frac{2}{\pi}}\sin(kx)$ [/mm]
stetig auf [mm] $C(\overline{\Omega})$ [/mm] sind, ist $u$ dort stetig.


Erstens weiß ich aber nicht, ob man das so machen kann und zweitens fehlt mir jede Idee, wie ich dann noch zeigen könnte, dass auch [mm] $u\in C^{\infty}(\Omega)$. [/mm]



Über Hilfe wäre ich dankbar!


Viele Grüße

mikexx

        
Bezug
Lösung stetig/ diff.bar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 26.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de