matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Logik und Mengenlehre" - Äquivalenzklasse reeller Zahl
Äquivalenzklasse reeller Zahl < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik und Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklasse reeller Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 So 24.11.2013
Autor: Lila_1

Aufgabe
Zeigen Sie: Ist [mm] s=\overline{(s_n)} \in \IR, [/mm] so ist [mm] |s|=\overline{(|s_n|)}. [/mm]

Vllt. kann man hier sowas anwenden wie:
A [mm] ={|(v_n)| : (v_n) \sim (s_n)} [/mm]
B [mm] ={(w_n): (w_n) \sim (|s_n|)} [/mm]
und dann die Mengengleichheit zeigen.
Aber wie zeige ich das?
Könnt ihr mir vllt. den Beginn des Beweises zeigen und vllt. erklären?

Gruß
[mm] lila_1 [/mm]

        
Bezug
Äquivalenzklasse reeller Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 So 24.11.2013
Autor: angela.h.b.


> Zeigen Sie: Ist [mm]s=\overline{(s_n)} \in \IR,[/mm] so ist
> [mm]|s|=\overline{(|s_n|)}.[/mm]


Hallo,

Du müßtest erstmal Deine Zeichen erklären.

Ich verstehe nur, daß s eine reelle Zahl ist.

Was ist [mm] (s_n)? [/mm] Eine Folge in [mm] \IR? [/mm]
Was bedeutet der Querstrich?

Die senkrechten Striche sind Betragsstriche?

LG Angela

> Vllt. kann man hier sowas anwenden wie:
> A [mm]={|(v_n)| : (v_n) \sim (s_n)}[/mm]
> B [mm]={(w_n): (w_n) \sim (|s_n|)}[/mm]

>

> und dann die Mengengleichheit zeigen.
> Aber wie zeige ich das?
> Könnt ihr mir vllt. den Beginn des Beweises zeigen und
> vllt. erklären?

>

> Gruß
> [mm]lila_1[/mm]


Bezug
                
Bezug
Äquivalenzklasse reeller Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 So 24.11.2013
Autor: Lila_1

Ja [mm] (s_n) [/mm] ist eine Folge und der Strich oben steht für Äquivalenzklasse  und die senkrechten Striche sind Betragstriche

Bezug
                        
Bezug
Äquivalenzklasse reeller Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 So 24.11.2013
Autor: angela.h.b.


> Ja [mm](s_n)[/mm] ist eine Folge und der Strich oben steht für
> Äquivalenzklasse

Dann müßte man auch die zugehörige Äquivalenzrelation kennen.

Vielleicht postest Du mal die komplette Aufgabe inkl. vorhergehender Teilaufgaben.

LG Angela



> und die senkrechten Striche sind
> Betragstriche


Bezug
                                
Bezug
Äquivalenzklasse reeller Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 So 24.11.2013
Autor: Lila_1

Ich habe die Aufgabe genauso reingestellt wie sie angegenben ist, dazu gibt es keine weiteren teilaufgaben
Deshalb weiß ich leider auch nicht wie ich es beweisen soll.
Gruß

Bezug
        
Bezug
Äquivalenzklasse reeller Zahl: reelle Zahlen - Cauchyfolgen
Status: (Antwort) fertig Status 
Datum: 17:04 So 24.11.2013
Autor: angela.h.b.


> Zeigen Sie: Ist [mm]s=\overline{(s_n)} \in \IR,[/mm] so ist
> [mm]|s|=\overline{(|s_n|)}.[/mm]

Hallo,

Du verschweigst uns allerlei...
Anhand Deiner anderen Threads habe ich mir ansatzweise grob zusammengereimt, worum es geht,
nämlich um die reelen Zahlen als Äquivalenzklassen von Cauchyfolgen in [mm] \IQ. [/mm]

Zwei Cauchyfolgen [mm] (a_n), (b_n) [/mm] heißen äquivalent, wenn die Differenzfolge eine Nullfolge ist:

[mm] (a_n)\sim (b_n) [/mm] <==> [mm] (a_n-b_n) [/mm] ist Nullfolge.

Diese Relation ist eine Äquivalenzrelation, und man definiert nun die reellen Zahlen als Äquivalenzklassen bzgl. dieser Relation:

[mm] \IR:= \{\overline{s_n}| s_n \quad ist \quad cauchyfolge\}. [/mm]

Nun erklärt man eine paasende Addition und Multiplikation und zeigt, daß [mm] \IR [/mm] ein Körper ist.

Soviel mal zu den Randbedingungen.

Irgendwie ist dann bei Euch ja der Absolutbetrag einer reellen Zahl definiert worden (wie?),
ich denke, daß vorher nach gesagt wurde, wann eine reelle Zahl positiv heißt und wann negativ (wann?)

Und nun soll hier gezeigt werden, daß der Absolutbetrag einer reellen reellen Zahl s, gleich der Äquivalenzklasse der zugehörigen "Absolutfolge" ist.

Aber ohne die benötigten Definitionen geht es nicht, und zumindest diese müßtest Du liefern.

Und natürlich auch Laut geben, wenn ich den Gesamtzusammenhang völlig falsch erraten habe.

LG Angela

> Vllt. kann man hier sowas anwenden wie:
> A [mm]={|(v_n)| : (v_n) \sim (s_n)}[/mm]
> B [mm]={(w_n): (w_n) \sim (|s_n|)}[/mm]

>

> und dann die Mengengleichheit zeigen.
> Aber wie zeige ich das?
> Könnt ihr mir vllt. den Beginn des Beweises zeigen und
> vllt. erklären?

>

> Gruß
> [mm]lila_1[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik und Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 7h 40m ago 3. xXMathe_NoobXx
USons/Binomialentwicklung
Status 12h 23m ago 1. Hela123
UStoc/Beweis Varianz von Summe
Status 13h 31m ago 3. mathnoob9
UWTheo/Konstruktion von ZV
Status 22h 35m ago 7. fred97
UAnaRn/Satz Implizite Funktion System
Status 1d 15h 28m ago 3. Dom_89
SDiffRech/Ableitung bilden
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]