matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Aussagenlogik" - Schreibweise mit Quantoren
Schreibweise mit Quantoren < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schreibweise mit Quantoren: Kontrolle /idee
Status: (Frage) beantwortet Status 
Datum: 09:21 Mo 08.01.2018
Autor: Windbeutel

Aufgabe
Schreibe mit Quantoren [mm] \forall [/mm] und [mm] \exists: [/mm]
  Wenn $a$ und $b$ reelle Zahlen mit [mm] $a\neq [/mm] 0$ sind, dann hat $ax+b=0$ eine Lösung.

  Wenn $a$ und $b$ reelle Zahlen mit [mm] $a\neq [/mm] 0$ sind, dann hat $ax+b=0$ eine eindeutige Lösung.

Hallo,
ich bin mir bei der gegebenen Thematik sehr unsicher, hier meine Lösungsideen:
a)
  [mm] $\forall (a\land b)\in \R$, [/mm] mit [mm] $a\neq 0\Rightarrow \exists [/mm] \ [mm] \R:P(ax+b=0)$. [/mm]
  
b)
  [mm] $\forall (a\land b)\in \R$, [/mm] mit  [mm] $a\neq0\Rightarrow \exists [/mm] ! \ [mm] \R:P(ax+b=0)$ [/mm]

Was haltet Ihr davon. liege ich richtig, gibt es elegantere schreibweisen?

Danke an alle die sich beteiligen.
Windbeutel

        
Bezug
Schreibweise mit Quantoren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Mo 08.01.2018
Autor: fred97


> Schreibe mit Quantoren [mm]\forall[/mm] und [mm]\exists:[/mm]
>    Wenn [mm]a[/mm] und [mm]b[/mm] reelle Zahlen mit [mm]a\neq 0[/mm] sind, dann hat
> [mm]ax+b=0[/mm] eine Lösung.
>  
> Wenn [mm]a[/mm] und [mm]b[/mm] reelle Zahlen mit [mm]a\neq 0[/mm] sind, dann hat
> [mm]ax+b=0[/mm] eine eindeutige Lösung.
>  Hallo,
>  ich bin mir bei der gegebenen Thematik sehr unsicher, hier
> meine Lösungsideen:
>  a)
>    [mm]\forall (a\land b)\in \R[/mm], mit [mm]a\neq 0\Rightarrow \exists \ \R:P(ax+b=0)[/mm].


Na ja,... Was bedeutet denn P ?

Ich würde das so formulieren:

[mm] $\forall [/mm] a [mm] \in \IR \setminus \{0\} \quad \forall [/mm] b [mm] \in \IR \quad \exists [/mm] x [mm] \in \IR [/mm] : ax+b=0$.

>  
>  
> b)
>    [mm]\forall (a\land b)\in \R[/mm], mit  [mm]a\neq0\Rightarrow \exists ! \ \R:P(ax+b=0)[/mm]

Versuchs mal nach obiger Vorlage.


>
> Was haltet Ihr davon. liege ich richtig, gibt es elegantere
> schreibweisen?
>  
> Danke an alle die sich beteiligen.
>  Windbeutel


Bezug
                
Bezug
Schreibweise mit Quantoren: P(x)
Status: (Frage) beantwortet Status 
Datum: 07:56 Di 09.01.2018
Autor: Windbeutel

Aufgabe
s.o.

Halle fred 97,

um eingangs auf deine Frage einzugehen P(x) .

Laut dem Buch mit dem ich arbeite ist P(x) Zitat:
" ein Satz wie " [mm] x^2>0 [/mm] " ist, können wir daraus eine Aussage der Form [mm] \forallx \in \setR [/mm] : p(x) bilden..."

Im Buch wird diese Schreibweise auch durchgehend verwendet, man muss also davon ausgehen, dass sie auch hier anwendung finden soll.
Da du ,trotz deiner mathematischen Vorbildung, die Schreibweise nicht kennst gehe ich mal davon aus, das der Autor sie selbst definiert hat (was ich nicht wusste). Ich hätte wohl diese Definition voher klarmachen müssen, entschuldige.

Aber so wie ich dass sehe ist meine Schreibweise auch dann falsch.
eine negation führt man doch wie folgt durch:
ein [mm] \forall [/mm] wird zu [mm] \exists [/mm] und ein [mm] \exists [/mm] zu [mm] \forall [/mm] ?
Dann müsste die Lösung zu a: $ [mm] \forall [/mm] (a [mm] \vee b)\in \R [/mm] $, mit $ a= [mm] 0\Rightarrow \exists [/mm] \ [mm] \R:P(ax+b=0) [/mm] $ lauten ?

Grüße und vielen Dank


Bezug
                        
Bezug
Schreibweise mit Quantoren: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Di 09.01.2018
Autor: fred97


> s.o.
>  Halle fred 97,
>  
> um eingangs auf deine Frage einzugehen P(x) .
>  
> Laut dem Buch mit dem ich arbeite ist P(x) Zitat:
>  " ein Satz wie " [mm]x^2>0[/mm] " ist, können wir daraus eine
> Aussage der Form [mm]\forallx \in \setR[/mm] : p(x) bilden..."

Dem Quelltext habe ich entnommen, dass das steht

[mm]\forall x \in \set R[/mm] : p(x)

Wie ist denn dann p(x) im Falle [mm] x^2>0 [/mm] definiert ????




>  
> Im Buch wird diese Schreibweise auch durchgehend verwendet,
> man muss also davon ausgehen, dass sie auch hier anwendung
> finden soll.
>  Da du ,trotz deiner mathematischen Vorbildung, die
> Schreibweise nicht kennst gehe ich mal davon aus, das der
> Autor sie selbst definiert hat (was ich nicht wusste). Ich
> hätte wohl diese Definition voher klarmachen müssen,
> entschuldige.
>  
> Aber so wie ich dass sehe ist meine Schreibweise auch dann
> falsch.
>  eine negation führt man doch wie folgt durch:
>  ein [mm]\forall[/mm] wird zu [mm]\exists[/mm] und ein [mm]\exists[/mm] zu [mm]\forall[/mm] ?

In Deiner Aufgabe gehts doch gar nicht um Negationen ..... ??


>  Dann müsste die Lösung zu a: [mm]\forall (a \vee b)\in \R [/mm],

Wieso [mm] \vee [/mm] ??  " Richtiger" wäre [mm]\forall (a \wedge b)\in \IR [/mm].

Aber diese Schreibweise ist ungewöhnlich. Besser: [mm]\forall (a , b)\in \IR^2 [/mm].


> mit [mm]a= 0\Rightarrow \exists \ \R:P(ax+b=0)[/mm] lauten ?

Das soll doch a [mm] \ne [/mm] 0 lauten und dann [mm] \exists [/mm] x [mm] \in \IR. [/mm] Wenn Du nun noch sagst wie P definiert ist kanns richtig werden.


>
> Grüße und vielen Dank
>  


Bezug
                                
Bezug
Schreibweise mit Quantoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:33 Di 09.01.2018
Autor: Windbeutel


> > s.o.
>  >  Halle fred 97,
>  >  
> > um eingangs auf deine Frage einzugehen P(x) .
>  >  
> > Laut dem Buch mit dem ich arbeite ist P(x) Zitat:
>  >  " ein Satz wie  [mm]x^2>0[/mm]   ist, können wir daraus eine
> > Aussage der Form [mm]\forallx \in \setR[/mm] : p(x) bilden..."
>  
> Dem Quelltext habe ich entnommen, dass das steht
>
> [mm]\forall x \in \set R[/mm] : p(x)
>  
> Wie ist denn dann p(x) im Falle [mm]x^2>0[/mm] definiert ????
>  

Komisch bei mir wird  in der Vorschau alles korekt dargestellt.


Um Missverständnisse zu vermeiden hier der komplette kurze Absatz, der zur Schreibweise P(x) im Buch steht:
Zitat:
Wenn p(x) ein Satz  [mm] x^2 [/mm] <0 ist, können wir die Aussage der Form [mm] \forall [/mm] x [mm] \in \setR [/mm] : P(x) bilden; z.B. [mm] \forall [/mm] x [mm] \in \setR :(x^2 [/mm] >0). (Der Doppelpunkt kann gelesen werden als"gilt".) Das " [mm] x^2 [/mm] > 0 " steht in Klammern, um deutlich zu machen, dass dies der Satz ist, der quantifiziert wird, Wenn der Satz zwei zu quantifizierende Variablen hat, bezeichnet man ihn als P(x, y).
Zitat Ende

>
>
>
> >  

> > Im Buch wird diese Schreibweise auch durchgehend verwendet,
> > man muss also davon ausgehen, dass sie auch hier anwendung
> > finden soll.
>  >  Da du ,trotz deiner mathematischen Vorbildung, die
> > Schreibweise nicht kennst gehe ich mal davon aus, das der
> > Autor sie selbst definiert hat (was ich nicht wusste). Ich
> > hätte wohl diese Definition voher klarmachen müssen,
> > entschuldige.
>  >  
> > Aber so wie ich dass sehe ist meine Schreibweise auch dann
> > falsch.
>  >  eine negation führt man doch wie folgt durch:
>  >  ein [mm]\forall[/mm] wird zu [mm]\exists[/mm] und ein [mm]\exists[/mm] zu [mm]\forall[/mm]
> ?
>  
> In Deiner Aufgabe gehts doch gar nicht um Negationen .....
> ??

Ja da hast Du recht, die Quantorenschreibweise macht mich noch ganz fertig.

>  
>
> >  Dann müsste die Lösung zu a: [mm]\forall (a \vee b)\in \R [/mm],

>
> Wieso [mm]\vee[/mm] ??  " Richtiger" wäre [mm]\forall (a \wedge b)\in \IR [/mm].

Stimmt, da war ich geistig bei der Negierung.

>  
> Aber diese Schreibweise ist ungewöhnlich. Besser: [mm]\forall (a , b)\in \IR^2 [/mm].
>  
>
> > mit [mm]a= 0\Rightarrow \exists \ \R:P(ax+b=0)[/mm] lauten ?
>
> Das soll doch a [mm]\ne[/mm] 0 lauten und dann [mm]\exists[/mm] x [mm]\in \IR.[/mm]

Auch da war ich schon wieder geistig bei der Negierung.

> Wenn Du nun noch sagst wie P definiert ist kanns richtig
> werden.
>  
>
> >

Grüße und vielen Dank

>  >  
>  


Bezug
                                        
Bezug
Schreibweise mit Quantoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 So 14.01.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 3h 31m ago 3. xXMathe_NoobXx
USons/Binomialentwicklung
Status 8h 15m ago 1. Hela123
UStoc/Beweis Varianz von Summe
Status 9h 23m ago 3. mathnoob9
UWTheo/Konstruktion von ZV
Status 18h 27m ago 7. fred97
UAnaRn/Satz Implizite Funktion System
Status 1d 11h 20m ago 3. Dom_89
SDiffRech/Ableitung bilden
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]