matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Existenz einer globalen Lösung
Existenz einer globalen Lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz einer globalen Lösung: Tipp,
Status: (Frage) beantwortet Status 
Datum: 21:59 Mi 16.05.2018
Autor: Filza

Aufgabe
Gegeben ist folgendes System:
[mm] u'(t)=sqrt(1+u(t)^2)+v(t)^3*sin(u(t))-u(t)^7 [/mm]
[mm] v'(t)=u(t)(1-v(t)^2*sin(u(t)) [/mm]
[mm] u(0)=u_0 [/mm] und [mm] v(0)=v_0 [/mm]
Man soll zeigen dass [mm] \forall(u_0,v_0) \in \IR [/mm] genau eine Lsg [mm] \forall [/mm] t>=0 existiert.

Könnte man sagen, dass da u'(t) und v'(t) stetig sind dass es dann lipschitz stetig ist, und daraus die behauptung
Würde mich auf ein paar Ideen freuen
Vielen Dank im Voraus:)


Könnte man sagen, dass, da u'(t) und v'(t) stetig sind dass es dann lipschitz stetig ist, und daraus die behauptung folgt
Würde mich auf ein paar Ideen freuen
Vielen Dank im Voraus:)


        
Bezug
Existenz einer globalen Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:53 Do 17.05.2018
Autor: fred97


> Gegeben ist folgendes System:
>  [mm]u'(t)=sqrt(1+u(t)^2)+v(t)^3*sin(u(t))-u(t)^7[/mm]
>  [mm]v'(t)=u(t)(1-v(t)^2*sin(u(t))[/mm]
>  [mm]u(0)=u_0[/mm] und [mm]v(0)=v_0[/mm]
>  Man soll zeigen dass [mm]\forall(u_0,v_0) \in \IR[/mm] genau eine
> Lsg [mm]\forall[/mm] t>=0 existiert.
>  
> Könnte man sagen, dass da u'(t) und v'(t) stetig sind dass
> es dann lipschitz stetig ist, und daraus die behauptung

Au weia ! Sei nicht böse, aber so wie Du Deine Anfrage formulierst, scheinst Du nicht viel aus Deiner Vorlesung mitgenommen zu haben ...




>  Würde mich auf ein paar Ideen freuen
>  Vielen Dank im Voraus:)
>  
> Könnte man sagen, dass, da u'(t) und v'(t) stetig sind
> dass es dann lipschitz stetig ist, und daraus die
> behauptung folgt
>  Würde mich auf ein paar Ideen freuen
>  Vielen Dank im Voraus:)
>  


Zunächst definieren wir die Funktion $f: [mm] \IR^2 \to \IR^2$ [/mm] durch

[mm] $f(u,v)=\vektor{\sqrt{1+u^2}v^3 \sin u - u^7 \\ u(1-v^2 \sin u)}$ [/mm]

Dann schreibt sich obiges Anfangswertproblem wie folgt:

[mm] \vektor{u'(t)\\ v'(t)}=f(u(t),v(t)). u(0)=u_0, v(0)=v_0. [/mm]

Nun zeige zuerst, dass f auf [mm] \IR^2 [/mm] lokal Lipschitzstetig ist. Das ist erledigt, wenn Du folgendes gemacht hast: ist (a,b) [mm] \in \IR^2, [/mm] so zeige, dass es eine Umgebung U von (a,b) gibt auf der die Jacobimatrix f'(u,v) beschränkt ist.

Dann wissen wir, dass obiges Anfangswertproblem eindeutig lösbar ist.

Wenn ich die Aufgabenstellung richtig interpretiere sollst Du auch noch zeigen, dass die eindeutig bestimmte Lösung des Anfangswertproblems auf dem Intervall $[0, [mm] \infty)$ [/mm] existiert.

Ihr hattet mit Sicherheit Sätze, die Aussagen über das maximale Existenzintervall machen. Schau mal nach.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 13h 31m ago 6. Takota
UAnaRn/Satz Implizite Funktion System
Status 16h 28m ago 3. Dom_89
SDiffRech/Ableitung bilden
Status 23h 27m ago 6. Dom_89
SIntRech/Partielle Integration/Substitu
Status 23h 29m ago 3. Dom_89
SLinGS/Lösungsverhalten LGS
Status 2d ago 2. HJKweseleit
UFina/Effektiver Zinssatz
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]