matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Vektor durch Zahl
Vektor durch Zahl < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor durch Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:29 Mi 25.04.2018
Autor: rubi

Hallo zusammen,

ein Einheitsvektor berechnet sich mit der Formel [mm] \overrightarrow{a_0}=\bruch{1}{|\overrightarrow{a}|} [/mm] * [mm] \overrightarrow{a}. [/mm]

Wäre es auch mathematisch erlaubt die Formel so aufzuschreiben ?
[mm] \overrightarrow{a_0}=\bruch{\overrightarrow{a}}{|\overrightarrow{a}|} [/mm]  ?

Ich frage deshalb nach, weil es gemäß der Vektorraumaxiome zwar erlaubt ist, eine Zahl * Vektor zu berechnen, aber nicht Vektor * Zahl.

Daher stelle ich mir die Frage, ob die Division eines Vektors durch eine Zahl durch die Vektorraumaxiome wirklich abgedeckt ist oder ob es sich um eine
"schulmathematische Vereinfachung" handelt.

Vielen Dank für Eure Antworten.

Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.



        
Bezug
Vektor durch Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Mi 25.04.2018
Autor: ChopSuey

Hallo,

> Hallo zusammen,
>
> ein Einheitsvektor berechnet sich mit der Formel
> [mm]\overrightarrow{a_0}=\bruch{1}{|\overrightarrow{a}|}[/mm] *
> [mm]\overrightarrow{a}.[/mm]
>  
> Wäre es auch mathematisch erlaubt die Formel so
> aufzuschreiben ?
>  
> [mm]\overrightarrow{a_0}=\bruch{\overrightarrow{a}}{|\overrightarrow{a}|}[/mm]
>  ?

Ja. Da ist auch die übliche Bezeichnung einer Normierung.

>  
> Ich frage deshalb nach, weil es gemäß der
> Vektorraumaxiome zwar erlaubt ist, eine Zahl * Vektor zu
> berechnen, aber nicht Vektor * Zahl.
>
> Daher stelle ich mir die Frage, ob die Division eines
> Vektors durch eine Zahl durch die Vektorraumaxiome wirklich
> abgedeckt ist oder ob es sich um eine
> "schulmathematische Vereinfachung" handelt.
>
> Vielen Dank für Eure Antworten.
>
> Grüße
>  Rubi
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
>  

LG,
ChopSuey


Bezug
        
Bezug
Vektor durch Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 07:29 Mi 25.04.2018
Autor: tobit09

Hallo rubi!


> ein Einheitsvektor berechnet sich mit der Formel
> [mm]\overrightarrow{a_0}=\bruch{1}{|\overrightarrow{a}|}[/mm] *
> [mm]\overrightarrow{a}.[/mm]
>  
> Wäre es auch mathematisch erlaubt die Formel so
> aufzuschreiben ?
>  
> [mm]\overrightarrow{a_0}=\bruch{\overrightarrow{a}}{|\overrightarrow{a}|}[/mm]
>  ?

Ich würde sagen: Das ist genau dann erlaubt, wenn vorher geeignet definiert/erklärt wurde, was mit "Vektor durch Skalar" gemeint sein soll.


> Daher stelle ich mir die Frage, ob die Division eines
> Vektors durch eine Zahl durch die Vektorraumaxiome wirklich
> abgedeckt ist

Nein, die Vektorraumaxiome selbst treffen sicherlich keine Definition einer Schreibweise "Vektor durch Skalar", aber natürlich wäre es kein Problem, eine solche abkürzende Schreibweise ergänzend zu definieren.


(Ich selbst kann mich nicht erinnern, eine solche Schreibweise schon einmal gesehen zu haben, aber das muss ja nichts heißen. Im Übrigen halte ich das aber auch für irrelevant für die Frage, ob die Schreibweise "erlaubt" ist. Entscheidend ist für mich, was im jeweiligen Kontext definiert wurde.)


Viele Grüße
Tobias

Bezug
        
Bezug
Vektor durch Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Mi 25.04.2018
Autor: fred97

Für einen Vektor [mm] \vec{a} [/mm] und einen Skalar $ [mm] \alpha \ne [/mm] 0$ definiert man

[mm] \frac{\vec{a}}{\alpha}:=\alpha^{-1}\vec{a}. [/mm]

[mm] \alpha^{-1}: [/mm]   multiplikatives Inverses von [mm] \alpha. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 1h 01m ago 4. donquijote
FunkAna/beschränkter linearer Operator
Status 3h 59m ago 25. donp
SAnaSonst/Zylinder aus O und V
Status 7h 12m ago 2. donp
USons/Bedeutung von dx, dt in Formel
Status 7h 16m ago 3. Noya
FunkAna/Jensensche Ungleichung
Status 10h 05m ago 3. Maxi1995
UAnaR1/Reaktion - erwünscht
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]