matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Polynomdarstellung
Polynomdarstellung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mi 09.05.2018
Autor: Maxi1995

Hallo,
ich habe Fragen zu einem Beweis einer Darstellungsform des charakteristischen Polynoms. []Dort (S.96) Dort wird schlicht die Determinante berechnet, über die das charakteristische Polynom definiert ist.
1. Jetzt fehlt aber in dieser Darstellung meiner Ansicht nach im ersten zum zweiten Schritt ein Term vom Grad n-1. Oder tritt der nicht auf, weil er unter den Permutationen in der Leibniz – Formel nicht getroffen wird?
2. Am Ende des Beweises von Satz 7.14 wird für den Koeffizient $ a _0$ die Darstellung ermittelt, was mich zu der Frage bringt, warum dieser Koeffizient mit dem in [mm] $\chi [/mm] _ A (X) $ übereinstimmen soll?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynomdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mi 09.05.2018
Autor: leduart

Hallo
ich weiss nicht genau was du vom 1. zum 2 ten Schritt meinst aber überall kommt ja x^(n-1) vor?
hall0 wenn du das Polynom [mm] \Chi_A(x) [/mm] hinschreibst, und dann x =0 einsetzt kommt doch das einzige Glied, das kein x als Faktor hat raus, also [mm] a_0 [/mm]
gruß leduart

Bezug
                
Bezug
Polynomdarstellung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:32 Mi 09.05.2018
Autor: Maxi1995

Hallo Leduart,
danke für deine Antwort.
Ich wollte folgende Formulierung zu den Beweisschritten zu meiner Frage ergänzen:
[mm] $\det({\it X*E_n}-{\it A}) [/mm] =
[mm] \underline{(X-a_{11})\cdots(X-a_{nn})+ \text{Terme vom grad} \leq n-2} [/mm] =
[mm] X^{n}-\displaystyle \sum_{i=1}^{n}a_{ii}X^{n-1}+ \text{ Terme vom grad} \leq [/mm] n-2 =
[mm] X^{n} [/mm] - Spur (A) [mm] X^{n-1}+ \text{Terme vom grad} \leq [/mm] n-2 .
Schreiben wir [mm] $\chi_{A}(X)=X^{n}-\mathrm{S}\mathrm{p}\mathrm{u}\mathrm{r}(A)X^{n-1}+a_{n-2}X^{n-2}+ \cdots +a_{1}X+a_{0}$, [/mm] so ist $ [mm] a_{0}=\chi_{A}(0)=\det(0E_{n}-A)=\det(-A)=(-1)^{n}\det(\it [/mm] A)$.
Ich habe es oben noch einmal kurz angefügt und den Teil mit meiner Frage unterstrichen. Ich sehe wohl, dass da [mm] $X^{n-1}$ [/mm] vorkommt, frage mich aber, was mit Permutationen mit (n-1) Fixpunkten ist, die bringen mir doch auch noch [mm] $X^{n-1}$ [/mm] oder? Sind die schon abgedeckt, weil [mm] $(X-a_{11})\cdots(X-a_{nn})$ [/mm] ist in meinen Augen gerade [mm] $sgn(E_n)b_{11} \cdots b_{nn}$ [/mm] (wobei [mm] $b_{ii}$ [/mm] gerade die Diagonaleinträge von [mm] ${\it X*E_n}-{\it A} [/mm] $ sind). Da sollten doch noch mehr auftauchen oder täusche ich mich, wenn ja wieso?
Danke für den Hinweis, da war ich zu verbohrt.


Bezug
                        
Bezug
Polynomdarstellung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 17.05.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                
Bezug
Polynomdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:55 Sa 19.05.2018
Autor: Maxi1995

Hallo,
kann mir vielleicht jemand meine als überfällig gekennzeichnete Frage beantworten, denn ich sehe wirklich nicht, was mit den Permutationen mit n-1 Fixpunkten passiert.

Bezug
                                        
Bezug
Polynomdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:03 Mo 21.05.2018
Autor: meili

Hallo Maxi1995,

> Hallo,
>  kann mir vielleicht jemand meine als überfällig
> gekennzeichnete Frage beantworten, denn ich sehe wirklich
> nicht, was mit den Permutationen mit n-1 Fixpunkten
> passiert.

Wenn man von einer Menge mit n Elementen ausgeht, gibt es keine
Permutation mit n-1 Fixpunkten.

Wenn du schon n-1 Elemente aufgeschrieben hast (jedes an seinem
Fixpunkt), bleibt für das n-te Element nur noch eine Möglichkeit übrig.
Und da alle anderen an ihrem Fixpunkt sind, bleibt für das letzte nur
sein Fixpunkt übrig.

Gruß
meili

Bezug
                                                
Bezug
Polynomdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Mo 21.05.2018
Autor: Maxi1995

Vielen Dank, das habe ich nicht gesehen. Manchmal habe ich ein Brett vor dem Kopf.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 1h 03m ago 4. donquijote
FunkAna/beschränkter linearer Operator
Status 4h 01m ago 25. donp
SAnaSonst/Zylinder aus O und V
Status 7h 14m ago 2. donp
USons/Bedeutung von dx, dt in Formel
Status 7h 18m ago 3. Noya
FunkAna/Jensensche Ungleichung
Status 10h 07m ago 3. Maxi1995
UAnaR1/Reaktion - erwünscht
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]