matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Legendresches Polynom
Legendresches Polynom < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Legendresches Polynom: Anzahl Nullstellen
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 28.12.2015
Autor: sandroid

Aufgabe
Das Legendresche Polynom n-ter Ordnung [mm]P_{n}: \mathbb{R} \mapsto \mathbb{R}[/mm] ist definiert durch

[mm]P_{n}(x) := \bruch{1}{2^{n}*n!}*\bruch{d^{n}}{dx^{n}}[(x^{2}-1)^{n}][/mm].

Man beweise:

[mm]P_{n}[/mm] hat genau [mm]n[/mm] verschiedene Nullstellen im Intervall (-1, 1).

Hallo Matheraum,

Ich habe zu rechnen angefangen (Siehe Bild), binomischen Lehrsatz angewendet und so weiter. Dabei habe ich angenommen, dass n gerade ist, um dann später den anderen Fall ggf. gesondert zu betrachten. Stimmt die Rechnung so weit? Nur komme ich nun leider nicht weiter. Vlt. muss ich auch gar nicht so weit rechnen, sondern kann irgendeinen schlauen Satz anwenden.

Vielen Dank für jede Hilfe.

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Legendresches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 Di 29.12.2015
Autor: fred97

Schau mal hier:

https://www.mathi.uni-heidelberg.de/~theiders/PS-Analysis/Ausarbeitung%20Legendrepolynome.pdf

fred

Bezug
                
Bezug
Legendresches Polynom: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:31 Di 29.12.2015
Autor: sandroid

Aufgabe
Behauptung: [mm] $\forall [/mm] n [mm] \in \mathbb{N}_{0}: P_{n}(1) [/mm] = 1$

Beweis: [mm] $P_{n}(x)=...=\bruch{1}{2^{n}n!}*\summe_{k=0}^{n}\vektor{n \\ k}\bruch{d^{k}}{dx^{k}}(x-1)^{k}*\bruch{d^{n-k}}{dx^{n-k}}(x+1)^{n-k}$ [/mm]

Für $x=1$ werden alle Summanden bis auf $k=0$ Null. Man erhält [mm] $P_{n}(1) [/mm] = [mm] \bruch{1}{2^{n}n!}*n!*2^{n} [/mm] = 1$

Danke Fred für deine Antwort und den Link zu dieser Seminararbeit. Ich habe eine vermutlich einfache Frage. Wie kommt sie (die Autorin) auf die [mm] $2^{n}$? [/mm] Dass alle Summanden Null werden bis auf den $k=0$-ten ist mir klar. Wenn ich das aber ausrechne, erhalte ich für diesen Summanden nur $n!$. Wo liegt mein Verständnisfehler?

Bezug
                        
Bezug
Legendresches Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:28 Mi 30.12.2015
Autor: hippias

Deine Formel ist falsch. Gib sie doch bitte richtig ein und erklaere, weshalb welcher Summand wirklich $=0$ ist. Dann wirst vermutlich selber drauf kommen, woher der Faktor [mm] $2^{n}$ [/mm] kommt.

Bezug
                                
Bezug
Legendresches Polynom: Der Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Mi 30.12.2015
Autor: sandroid

Hallo,

danke dir, du hast mich in dem Gedanken bestärkt, dass da etwas nicht stimmen kann. Ohne der Autorin nun eine Schuld zuschieben zu wollen, hat sich in ihrer Arbeit wohl ein kleiner Fehler eingeschlichen (Siehe S. 5). So einfach ist das nicht. Wendet man dann aber die Leibnizsche Formel richtig an, so komme ich nun auch auf das erwartete Ergebnis.

Vielen Dank!


PS: Gerne würde ich nun meine Frage als beantwortet markieren, sodass hier hilfsbereite Menschen nicht umsonst lesen, aber ich finde den Button nicht. Ist das vorgesehen?

Bezug
                                        
Bezug
Legendresches Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:02 Mi 30.12.2015
Autor: hippias

Ich habe den Status geändert.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 26m ago 4. Diophant
SDiffRech/Steckbriefaufgabe Parameter
Status 1h 59m ago 16. Al-Chwarizmi
IntTheo/Flächenmaß berechnen
Status 3h 0m ago 8. Gonozal_IX
UAnaR1FunkInt/Faltungen abschätzen
Status 4h 0m ago 4. fred97
UAnaR1FolgReih/Potenzreiehenentwicklung
Status 4h 45m ago 2. chrisno
SStochKomb/Kombinationen
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]