matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Faltungen abschätzen
Faltungen abschätzen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltungen abschätzen: Frage zu Abschätzung
Status: (Frage) beantwortet Status 
Datum: 17:55 Fr 19.01.2018
Autor: Tipsi

Aufgabe
Hallo liebe Mitglieder,
ich habe einen Beweis betrachtet, in dessen Verlauf mir eine Ungleichung unklar ist:
Ist [mm]f \in L^1, g \in C_c^k[/mm], dann gilt für die Faltung: |f*g(x)| [mm]\leq \int_{x+supp(g)}|f|d\lambda^n[/mm].





Mir ist nicht klar, wie man auf die Ungleichung kommt.

        
Bezug
Faltungen abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Sa 20.01.2018
Autor: fred97


> Hallo liebe Mitglieder,
> ich habe einen Beweis betrachtet, in dessen Verlauf mir
> eine Ungleichung unklar ist:
> Ist [mm]f \in L^1, g \in C_c^k[/mm], dann gilt für die Faltung:
> |f*g(x)| [mm]\leq \int_{x+supp(g)}|f|d\lambda^n[/mm].
>  
>
>
>
> Mir ist nicht klar, wie man auf die Ungleichung kommt.

Hast Du einige Vor. an g vergessen, etwa |g| [mm] \le [/mm] 1 ?

Nenne bitte alle Vor., man für den Beweis braucht .


Bezug
                
Bezug
Faltungen abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Sa 20.01.2018
Autor: Tipsi

Hallo, danke für deine Beteiligung am Thread!

Das sind eigentlich alle Voraussetzungen. Es ist eine Umformung im Beweis von "Für [mm]f\in L^1(\mathbb R^n)[/mm] und [mm]g \in C_c^k(\mathbb R^n)[/mm] mit [mm]0 \leq k \leq \infty[/mm] gilt [mm]f \ast g \in C_0^k(\mathbb R^n)[/mm]. "

Bezug
                        
Bezug
Faltungen abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Mo 22.01.2018
Autor: Gonozal_IX

Hey,

da fred sich bisher nicht zurückmeldete nochmal als Klarstellung, was fred implizit meinte: Ohne weitere Annahmen ist die Aussage falsch.

Nimm bspw. $f = [mm] 1_{[-1,1]}$ [/mm]

Dann ist [mm] $(f\*g)(x) [/mm] = [mm] \int_\IR [/mm] f(t) g(x-t) dt = [mm] \int_{-1}^1 [/mm] g(x-t) dt$

Und [mm] $\int_{x+\text{supp}(g)} [/mm] |f| [mm] d\lambda [/mm] = [mm] \lambda(\{\{x + \text{supp(g)}\} \cap{[-1,1]})$ Setzt du nun $x=0$ und $\text{supp}(g) = [-1,1]$ soll nach dem Satz also gelten: $|(f\*g)(0)| = \int_{-1}^1 g(t) dt \le \lambda([-1,1]) = 2$ Dabei ist $ g \in C_c^k(\mathbb R ) $ beliebig bis auf die Festlegung $\text{supp}(g)} [/mm] = [-1,1]$

Dir ist hoffentlich klar, dass das nicht funktioniert…

Anders sieht die Sache aus, wenn man $|g| [mm] \le [/mm] 1$ annimmt, dann folgt sofort:

[mm] $|(f\*g)(x)| \le \int_{\IR^n} [/mm] |f(t) g(x-t)| dt [mm] \le \int_{\IR^n} [/mm] |f(t)| [mm] 1_{\text{supp}(g)}(x-t) [/mm] dt = [mm] \int_{x +\text{supp}(g)} [/mm] |f(t)| dt$

Gruß,
Gono

Bezug
                                
Bezug
Faltungen abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:07 Di 23.01.2018
Autor: Tipsi

Okay, danke Gono!
In dem Skript steht es leider genau so, wie ich es euch hier geschrieben habe.
Aber vlt. ist dem Autor bei dem Beweis oder dem Satz dann einfach ein Fehler unterlaufen.
LG
Tipsi

Bezug
                                        
Bezug
Faltungen abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Di 23.01.2018
Autor: Gonozal_IX

Hiho,

> Okay, danke Gono!
> In dem Skript steht es leider genau so, wie ich es euch
> hier geschrieben habe.
> Aber vlt. ist dem Autor bei dem Beweis oder dem Satz dann
> einfach ein Fehler unterlaufen.

hast du einen Link?
Mach dir auch klar, dass die Einschränkung $|g| [mm] \le [/mm] 1$ gar nicht relevant ist!

Betrachten wir nämlich die Konstante $c = [mm] \max_{x\in \text{supp(g)}} [/mm] |g(x)|$ (warum existiert die?) so ist [mm] $c\ge [/mm] 0$, der Fall $c=0$ ist trivial (warum?), sei also $c > 0$, dann gilt

$ f [mm] \ast [/mm] g [mm] \in C_0^k(\mathbb R^n) \gdw \frac{1}{c}(f \ast [/mm] g) [mm] \in C_0^k(\mathbb R^n) [/mm] $

Aber:  [mm] $\frac{1}{c}(f \ast [/mm] g) = f [mm] \ast \frac{g}{c} [/mm] = [mm] f\ast \overline{g}$ [/mm]

Und [mm] $\overline{g}$ [/mm] erfüllt nun alle Bedingungen von $g$ und zusätzlich gilt [mm] $\overline{g} \le [/mm] 1$

Und wir erhalten

$ f [mm] \ast [/mm] g [mm] \in C_0^k(\mathbb R^n) \gdw [/mm] f [mm] \ast \overline{g} \in C_0^k(\mathbb R^n) [/mm] $

D.h. wir brauchen immer nur Faltungen zu überprüfen, in denen $|g| [mm] \le [/mm] 1$ gilt.



Gruß,
Gono


Bezug
                                                
Bezug
Faltungen abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Di 23.01.2018
Autor: Tipsi

Hallo Gono, danke für deine Erklärungen.
Einen Link gibt es nicht, aber ich häng mal zwei Fotos von dem Satz an (die Qualität ist leider sehr schlecht, weil meine Handykamera keine Scharfstellfunktion hat).


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
                                                        
Bezug
Faltungen abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Mi 24.01.2018
Autor: Gonozal_IX

Aha…

so wie ich das sehe steht da "für positive g mit [mm] $||g||_1 [/mm] = 1$"
Wo wir bei einer zusätzlichen Eigenschaft wären und mindestens mein Gegenbeispiel nicht mehr funktioniert… nächste Mal doch bitte alle Eigenschaften angeben.

Gruß,
Gono

Bezug
                                                                
Bezug
Faltungen abschätzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Mi 24.01.2018
Autor: Tipsi

Hallo Gono,
ich hatte nicht gedacht, dass der Abstatz auch als Voraussetzung für die Proposition mit einzubeziehen ist. Ich dachte, das wäre eine allgemeine Nebenbemerkung, wie man die Faltung auffassen kann.
Aber bei den Voraussetzungen für die Proposition steht die Eigenschaft ja nicht dabei.

Nun gut, dann war's im Skript wsl. so gemeint, wie du geschrieben hast und die Frage wäre geklärt. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 1h 33m ago 1. Max34
LinAMoVR/Diagonalmatrix
Status 2h 39m ago 4. donquijote
FunkAna/beschränkter linearer Operator
Status 5h 37m ago 25. donp
SAnaSonst/Zylinder aus O und V
Status 8h 49m ago 2. donp
USons/Bedeutung von dx, dt in Formel
Status 8h 54m ago 3. Noya
FunkAna/Jensensche Ungleichung
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]